Search results

Search for "severe plastic deformation" in Full Text gives 9 result(s) in Beilstein Journal of Nanotechnology.

Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy

  • Rafał Babilas,
  • Dariusz Łukowiec and
  • Laszlo Temleitner

Beilstein J. Nanotechnol. 2017, 8, 1174–1182, doi:10.3762/bjnano.8.119

Graphical Abstract
  • amorphous materials can be also produced by other methods, including severe plastic deformation [19] or wet-chemistry deposition of thin films [20]. Severe plastic deformation leads to phase transitions and strong grain refinement in metallic alloys (e.g., Al–Zn, Al–Zn–Mg, Cu–Ni, Co–Cu, Ni–Y–Nb and Zr–Nb
PDF
Album
Full Research Paper
Published 31 May 2017

Diffusion and surface alloying of gradient nanostructured metals

  • Zhenbo Wang and
  • Ke Lu

Beilstein J. Nanotechnol. 2017, 8, 547–560, doi:10.3762/bjnano.8.59

Graphical Abstract
  • comparison with those in the CG sample [18]. Particular attention has been paid to the diffusion behavior in nanostructured or ultrafine grained (UFG) materials produced by using severe plastic deformation (SPD), mostly because of the bulk forms of nanostructures. Inconsistences also exist in the
PDF
Album
Review
Published 03 Mar 2017

Ferromagnetic behaviour of ZnO: the role of grain boundaries

  • Boris B. Straumal,
  • Svetlana G. Protasova,
  • Andrei A. Mazilkin,
  • Eberhard Goering,
  • Gisela Schütz,
  • Petr B. Straumal and
  • Brigitte Baretzky

Beilstein J. Nanotechnol. 2016, 7, 1936–1947, doi:10.3762/bjnano.7.185

Graphical Abstract
  • nanograined alloys obtained by the severe plastic deformation [65][66]. Conclusion In summary, we observed that, contrary to the prediction of Dietl et al. [1], the doping of bulk ZnO with Mn, Co, Fe or Ni does not make it ferromagnetic. On the other hand, nanograined ZnO becomes ferromagnetic even without
PDF
Album
Review
Published 07 Dec 2016

A new approach to grain boundary engineering for nanocrystalline materials

  • Shigeaki Kobayashi,
  • Sadahiro Tsurekawa and
  • Tadao Watanabe

Beilstein J. Nanotechnol. 2016, 7, 1829–1849, doi:10.3762/bjnano.7.176

Graphical Abstract
  • grain boundaries and triple junctions. This is often associated with the nonequilibrium deformation of microstructures introduced by severe plastic deformation (SPD) with less thermal stability, excess structural defects and chemical composition by segregation to grain boundaries and interfaces [12][15
  • grain boundaries are strongly affected by processing routes and conditions [53][54]. As for those bulk ultrafine-grained (UFG) materials produced by severe plastic deformation (SPD) (e.g., equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) initiated by Valiev and Langdon [55][56
PDF
Album
Review
Published 25 Nov 2016

Effect of triple junctions on deformation twinning in a nanostructured Cu–Zn alloy: A statistical study using transmission Kikuchi diffraction

  • Silu Liu,
  • Xiaolong Ma,
  • Lingzhen Li,
  • Liwen Zhang,
  • Patrick W. Trimby,
  • Xiaozhou Liao,
  • Yusheng Li,
  • Yonghao Zhao and
  • Yuntian Zhu

Beilstein J. Nanotechnol. 2016, 7, 1501–1506, doi:10.3762/bjnano.7.143

Graphical Abstract
  • dislocations produced by severe plastic deformation [32]. The inset shows a corresponding diffraction pattern. The presence of smeared and ring-like diffraction patterns implies lots of nanoscale grains and their low-angle misorientations. This result is consistent with previous reports of copper alloys
PDF
Album
Full Research Paper
Published 24 Oct 2016

The self-similarity theory of high pressure torsion

  • Yan Beygelzimer,
  • Roman Kulagin,
  • Laszlo S. Toth and
  • Yulia Ivanisenko

Beilstein J. Nanotechnol. 2016, 7, 1267–1277, doi:10.3762/bjnano.7.117

Graphical Abstract
  • -similarity; severe plastic deformation; Introduction High pressure torsion (HPT) is a severe plastic deformation process, which is widely used for producing nanocrystalline metals and alloys [1][2][3]. The generally accepted theory of HPT is based on the assumptions of uniformity of simple shear deformation
PDF
Album
Full Research Paper
Published 07 Sep 2016

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • . Bulk nc metals are typically produced by severe plastic deformation [8][9][10][11], inert gas condensation [4][12] or electrochemical deposition [13]. The different approaches result in significant differences in dislocation and twin density, porosity and impurity levels of the nc metals, where, e.g
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe

  • Jonathan Schäfer and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 542–553, doi:10.3762/bjnano.4.63

Graphical Abstract
  • state was found after rolling at liquid nitrogen temperature to obtain a nanometer grain size [6]. In nanostructured Ni3Al processed by ball milling [7] or high pressure torsion [8], on the contrary, a complete loss of order is observed during preparation. Grain refinement by severe plastic deformation
PDF
Album
Full Research Paper
Published 19 Sep 2013

Nanoglasses: a new kind of noncrystalline materials

  • Herbert Gleiter

Beilstein J. Nanotechnol. 2013, 4, 517–533, doi:10.3762/bjnano.4.61

Graphical Abstract
  • with an average size of about 30 nm. Recent studies of the structure and the properties of nanoglasses produced by magnetron sputtering [7][8] suggest that their structure and properties are comparable to the ones of nanoglasses produced by inert gas condensation. Severe plastic deformation Due to the
PDF
Album
Review
Published 13 Sep 2013
Other Beilstein-Institut Open Science Activities